Kenilworth Public Schools Curriculum Guide

Content Area: Algebra II
Grade: 10-11
BOE Approved: 8/13/2012

Revision Date: August 2023
Submitted by: Michelle Ryan
BOE Revision Approved: 8/14/23

Unit 1- Quadratic Functions \& Factoring	Unit 2- Polynomials and Polynomial Functions	Unit 3- Rational Functions	Unit 4- Rational Exponents and Radical Functions	Unit 5- Exponential and Logarithmic Functions	Unit 6- Sequences and Series, Data Analysis, Right Triangle Trig.
Weeks 1-12	Weeks 13-18	Weeks 19-24	Weeks 25-29	Weeks 30-34	Weeks 35-40
Unit Description: Graph, analyze, model, and solve quadratic functions.	Unit Description: Use properties of exponents. Graph, analyze, model, and solve polynomial functions.	Unit Description: Graph, analyze, model and solve rational functions.	Unit Description: Understand and use rational exponents. Analyze and graph radical functions. Solve radical equations.	Unit Description: Graph, analyze, model, and solve exponential and logarithmic functions.	Unit Description: Define, analyze, and find sums of sequences and series. Apply the fundamentals of data analysis and probability distributions. Apply basic Right Triangle Trigonometry.
Unit Targets: - Graph quadratic functions in standard form.	Unit Targets: - Use Properties of Exponents.	Unit Targets: - Model Inverse and Joint Variation. - Graph Simple Rational Functions.	Unit Targets: - Evaluate nth Roots and use Rational Exponents.	Unit Targets: - Graph exponential growth functions. - Graph exponential decay functions.	Unit Targets: - Define and use Sequences and Series.

[^0]| - Graph quadratic functions in vertex or intercept form.
 - Solve $x^{2}+b x+c=0$ by factoring.
 - Solve $a x^{2}+b x+c=0$ by factoring.
 - Solve quadratic equations by find square roots.
 - Perform Operations with complex numbers.
 - Solve Quadratics by completing the square.
 - Use the Quad. Formula and the discriminant.
 - Graph and Solve Quad. Inequalities. | - Evaluate and Graph Polynomial Functions.
 - Add, Subtract, and Multiply Polynomials.
 - Factor and Solve Polynomial Equations.
 - Apply the Remainder and Factor Theorems.
 - Find Rational Zeros.
 - Apply the Fundamental Theorem of Algebra.
 - Analyze Graphs of Polynomial Functions. | - Graph General Rational Functions.
 - Multiply and Divide Rational Expressions.
 - Add and Subtract Rational Expressions.
 - Solve Rational Equations.
 - Describe and Compare Function Characteristics. | - Apply Properties of Rational Exponents.
 - Perform Function Operations and Composition.
 - Use Inverse Functions.
 - Graph Square Root and Cube Root Functions.
 - Solve Radical Equations. | - Use functions involving e.
 - Evaluate logarithms and graph logarithmic functions.
 - Apply properties of logarithms.
 - Solve exponential and logarithmic equations.
 - Create and apply exponential and power functions. | - Analyze arithmetic sequences and series.
 - Analyze geometric sequences and series.
 - Evaluate Sums of infinite geometric series.
 - Analyze variation.
 - Construct and interpret Normal Distributions. |
| :---: | :---: | :---: | :---: | :---: | :---: |

Unit title: Quadratic Functions and Factoring		
Unit summary: Graph, analyze, model and solve quadratic functions.		
Primary interdisciplinary connections: Business, Social Studies, Science		
$21^{\text {st }}$ Century Themes: Global Awareness, Financial, Economic, Business and Entrepreneurial Literacy, Life and Career Skills, Information Literacy		
Learning Targets		
Standards: NJSLS: 9-12.F.IF.7a, 9-12.A.SSE.3a, 9-12.A.REI.4b, 9-12.N.CN.2, 9-12.A.REI.4a, 9-12.N.CN. 7		
Content Statements:		
1	Quadratic functions in standard form	
2	Quadratic functions in vertex or intercept	orm
3	Factoring $\mathrm{x}^{2}+\mathrm{bx}+\mathrm{c}=0$	
4	Factoring $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$	
5	Square roots of Quadratic Equations	
6	Complex numbers	
7	Completing the square	
8	The Quadratic Formula and the discrimina	
9	Quadratic Inequalities	
Big Idea: Many real-life situations can be modeled using quadratic functions.		
	t Essential Questions: hat is the shape and characteristics of the raph of a quadratic function? hat real-world situations can be modeled quadratics? ow can quadratic functions be solved and ow many solutions can exist?	Unit Enduring Understandings: - Quadratic functions are in the shape of a parabola. - There are as many as two solutions for a quadratic function and a variety of techniques for finding them.

Unit Learning Targets
Students will...

- Graph quadratic functions in standard form.
- Graph quadratic functions in vertex or intercept form.
- Solve $x^{2}+b x+c=0$ by factoring.
- Solve $a x^{2}+b x+c=0$ by factoring.
- Solve quadratic equations by finding square roots.
- Perform Operations with complex numbers.
- Solve Quadratics by completing the square.
- Use the Quadratic Formula and the discriminant.
- Graph and Solve Quadratic Inequalities.

Evidence of Learning

Summative Assessment: Quizzes, Tests
Formative Assessments:
\bullet Homework
\bullet Classwork
\bullet Other activities at teacher's discretion

- Other activities at teacher's discretion

Lesson Plans

Activities	Timeframe
- Graph the parent function for quadratic functions,	
identify the characteristics of the graph, and explore the	
effects of changing the coefficients of quadratic	Weeks 1-12
functions in standard form.	
1. Graph the parent function.	
2. Identify the vertex and axis of symmetry.	
3. Explore the effect of changing the coefficient	
"a" to values greater than and less than one and to	
positive and negative values.	
4. Explore the effect of adding a "c" coefficient	
and changing its value.	
5. Explore the effect of adding a "b" coefficient	
and changing its value.	

Revised 2023
6. Recognize that " c " is the y-intercept and discuss the formula for the x-coordinate of the vertex.

- Model dropped objects with the quadratic function.

1. Given the model function, calculate times for objects to fall to earth from various heights. Discuss the relationship between the height and the time to drop to the earth. Demonstrate with actual objects. Discuss that mass does not affect the time to drop (assuming negligible air resistance).
2. Extend the discussion to include the path of all objects in flight, such as that of a batted baseball. Discuss the independence of horizontal and vertical motion.
3. Find maximum heights of objects in flight.

Teacher Resources	Teacher Note
\bullet Graphing software projected on a large screen	If all students are provided graphing calculators, add an individual - Actual objects of various weights to drop as demonstrations
\bullet Blackboard or whiteboard the first activity.	

Unit title: Polynomials and Polynomial Functions		
Unit summary: Use properties of exponents. Graph, analyze, model, and solve polynomial functions.		
Primary interdisciplinary connections: Business, Social Studies, Science		
$\mathbf{2 1}^{\text {st }}$ Century Themes: Global Awareness, Financial, Economic, Business and Entrepreneurial Literacy, Life and Career Skills, Information Literacy		
Learning Targets		
Standards: NJSLS: 9-12.N.RN.1, 9-12.F.IF.7c, 9-12. A.APR.1, 9-12.A.SSE.2, 9-12.A.APR.2, 9-12.N.CN. 9		
Content Statements:		
1	Properties of Exponents	
2	Evaluate and Graph Polynomial Functio	
3	Add, Subtract, and Multiply Polynomi	
4	Polynomial Equations	
5	Remainder and Factor Theorems	
6	Rational Zeros	
7	Fundamental Theorem of Algebra	
8	Analyze Graphs Polynomial Functions	
Big Idea: Perform Operations on Polynomial expressions and graph polynomial functions.		
Unit Essential Questions: - How are addition, subtraction, multiplication, and division applied to polynomials? - How are polynomials factored? - What are the shapes and characteristics of the graphs of polynomial functions?		Unit Enduring Understandings: - Operations can be performed on polynomials. - Polynomials can be factored using a variety of techniques. - The number of solutions of polynomial functions is at most the degree. - The domain is the set of all real numbers and the functions are continuous.

Unit Learning Targets
Students will...

- Use Properties of Exponents.
- Evaluate and Graph Polynomial Functions.
- Add, Subtract, and Multiply Polynomials.
- Factor and Solve Polynomial Equations.
- Apply the Remainder and Factor Theorems.
- Find Rational Zeros.
- Apply the Fundamental Theorem of Algebra.
- Analyze Graphs of Polynomial Functions.

Evidence of Learning

Summative Assessment: Quizzes, Tests
Formative Assessments:

- Homework
- Classwork
- Other activities at teacher's discretion

Lesson Plans

Activities	Timeframe
- Model volumes of geometric shapes with polynomial	Weeks 13-18
functions: Given a rectangle, cylinder, and pyramid,	
each with dimensions that include variables, find the	
associated volumes. Include binomials as needed (see	
pages 92 and 108).	
- Explore the graphs of polynomial functions:	
1. Graph a cubic function with a positive leading	
coefficient and a cubic function with a negative	
leading coefficient, on the same coordinate plane.	
Note the characteristics of the graphs. (see page	
98 example \#5 for possible functions to use)	
2. Graph a quartic function with a positive leading	
coefficient and a quartic function with a negative	
leading coefficient, on the same coordinate plane.	
Note the characteristics of the graphs (see page	
98 example \#5 for possible functions to use).	

UNIT 2 PLAN ALGEBRA II
Grades 10-12
Revised 2023

3. Summarize the observations. Make conclusions about end behavior (see page 97).	
Teacher Resources	Teacher Note
Graphing software projected onto a large screen	If all students have access to graphing calculators, students may make individual graphs, and make the same observations

Unit title: Rational Functions		
Unit summary: Graph, analyze, model and solve rational functions		
Primary interdisciplinary connections: Business, Social Studies, Science		
$\mathbf{2 1}^{\text {st }}$ Century Themes: Global Awareness, Financial, Economic, Business and Entrepreneurial Literacy, Life and Career Skills, Information Literacy		
Learning Targets		
Standards: NJSLS: 9-12.A.CED.2, 9-12.F.IF.7d, 9-12.A.APR.7, 9-12.A.REI.2, 9-12.F.IF.9		
Content Statements:		
1	Inverse and Joint Variation	
2	Simple Rational Functions	
3	General Rational Functions	
4	Multiply and Divide Rational Expressions	
5	Add and Subtract Rational Expressions	
6	Rational Equations	
7	Characteristics of Function	
Big Idea: Functions with variables in the denominator are defined as rational and can be used to model real-life situations.		
	it Essential Questions: What are possible characteristics of the aphs of rational functions? What happens when the denominator of a tional expression/function becomes zero? ow do we solve rational equations?	Unit Enduring Understandings: - The domain of rational functions may not be the set of all real numbers. - The graphs of rational functions may contain holes and/or asymptotes. - There are various ways to solve rational equations.

Unit Learning Targets
Students will...

- Model Inverse and Joint Variation.
- Graph Simple Rational Functions.
- Graph General Rational Functions.
- Multiply and Divide Rational Expressions.
- Add and Subtract Rational Expressions.
- Solve Rational Equations.
- Describe and Compare Function Characteristics.

Evidence of Learning

Summative Assessment: Quizzes, Tests
Formative Assessments:

- Homework
- Classwork
- Other activities at teacher's discretion

Lesson Plans

Activities	Timeframe
• Given that two variables vary inversely, and given one	
pair of values that satisfy the relationship, write an	
equation for the function. Repeat this for several	
different inverse variation functions. Notice a pattern in	
this process.	
- Given one inverse variation function, one rational	
function that has a hole in the graph, one rational	
function that has a single vertical asymptote (not at	
x=0), and one rational function that has two vertical	
asymptotes:	
1. Discuss values that would not be possible for x.	
Describe the domain for each function.	Weeks 19-24
2. Display the graphs of each function to illustrate	
that these values for x indeed cannot exist.	
Teacher Resources	

UNIT 3 PLAN ALGEBRA II
Grades 10-12
Revised 2023

\bullet Graphing software projected onto a large screen.	If all students have access to graphing calculators, students can graph the functions individually in order make the observations

Unit Learning Targets
Students will...
- Evaluate nth Roots and use Rational Exponents.
- Apply Properties of Rational Exponents.
- Perform Function Operations and Composition.
- Use Inverse Functions.
- Graph Square Root and Cube Root Functions.
- Solve Radical Equations.

Evidence of Learning

Summative Assessment: Quizzes, Test
Formative Assessments:

- Homework
- Classwork
- Other activities at teacher's discretion

Lesson Plans

Activities	Timeframe		
- Simplify given nth roots where $\mathrm{n}=2,3,4$ and 5. List perfect squares, perfect cubes, perfect powers of four, and perfect powers of five. Discuss a general procedure for simplifying roots.	Weeks 25-29		
- Graph the parent function for square roots and explore			
the characteristics of the graph.			
1. Graph the parent function for square roots			
2. Change the leading coefficient to values that are			
less than and greater than one. Note the effect on			
the graph.		\quad	3. Change the leading coefficient to a negative
:---			
value. Note the effect on the graph.			
4. Add constants that translate the graph. Note the			
effect on the graph.			

UNIT 4 PLAN ALGEBRA II
Grades 10-12
Revised 2023

- Graphing software projected onto a large screen	If all students have access to graphing calculators, the graphing can be done individually and the same observations can be made.

Unit title: Exponential and Logarithmic Functions		
Unit summary: Graph, analyze, model, and solve exponential and logarithmic functions.		
Primary interdisciplinary connections: Business, Social Studies, Science		
$21{ }^{\text {st }}$ Century Themes: Global Awareness, Financial, Economic, Business and Entrepreneurial Literacy, Life and Career Skills, Information Literacy		
Learning Targets		
Standards: NJSLS: 9-12.F.IF.7e, 9-12.F.BF.5, 9-12.F.LE.4, 9-12.F.LE. 2		
Content Statements:		
1	Exponential growth functions	
2	Exponential decay functions	
3	Functions involving e	
4	Evaluate logarithms and graph logarith	unctions
5	Properties of logarithms	
6	Exponential and logarithmic equations	
7	Exponential and power functions	
Big Idea: Exponential functions can be used to model growth and decay and can be solved using logarithms.		
	it Essential Questions: What are the characteristics of the graphs f exponential and logarithmic functions? What can be modeled using exponential functions? How can operations be performed on xponential and logarithmic functions? How can exponential and logarithmic unctions be solved?	Unit Enduring Understandings: - The graphs of exponential functions can be used to model growth and decay. - There are special properties for performing operations on logarithmic and exponential expressions. - Exponential and logarithmic functions are inverses and can be used to solve each other.

Unit Learning Targets
Students will...

- Graph exponential growth functions.
- Graph exponential decay functions.
- Use functions involving e.
- Evaluate logarithms and graph logarithmic functions.
- Apply properties of logarithms.
- Solve exponential and logarithmic equations.
- Create and apply exponential and power functions.

Evidence of Learning

Summative Assessment: Quizzes, Tests
Formative Assessments:

- Homework
- Classwork
- Other activities at teacher's discretion

Lesson Plans

Activities	Timeframe		
- Model a family tree with an exponential growth function.	Weeks 30-24		
1. Beginning with oneself, draw a family tree for			
about four generations.			
2.	Make a table of values for the number of		
generations, and the corresponding numbers of			
ancestors.		\quad	3.Explore the pattern. Write a function for the number of ancestors as a function of the generation. Determine the number of ancestors one has going back for a large number of generations.
:---			
- Explore the graphs of exponential decay functions.			
1. Graph the parent function for exponential decay			
functions.			
2. Change the value and sign of the leading			
coefficient. Note the effect on the graph.			

UNIT 5 PLAN ALGEBRA II
Grades 10-12
Revised 2023

3. Add constants that translate the graph. Note the effect on the graph.			
Teacher Resources			Teacher Note
:---:			
\bullet Graphing software projected onto large screen			
Ifculators, the graphs can be made individually and the same changes and observations can be made.			

	Right triangle trigonometry can be used to solve a triangle given only two measurements.
Unit Learning Targets	
Students will...	
- Define and use Sequences and Series.	
- Analyze arithmetic sequences and series.	
• Analyze geometric sequences and series.	
- Evaluate Sums of infinite geometric series.	
- Analyze variation.	
- Construct and interpret Normal Distributions.	

Evidence of Learning

Summative Assessment: Quizzes, Test
Formative Assessments:

- Homework
- Classwork
- Other activities at teacher's discretion

Lesson Plans

Activities	Timeframe
- Investigate an infinite geometric series with the activity on page 459 . - Calculate the height of tall objects given the angle of inclination to the top of the object from a given distance from the base of the object, using right triangle trigonometry.	Weeks 35-40
Teacher Resources	Teacher Note
- Colored paper, scissors for each student - Clinometer, measuring tape or measuring wheel	The trigonometry activity is best done outdoors to calculate the height of very tall objects. As an alternate, it can be accomplished in the classroom and the angle of inclination should be measured from a sitting position.

UNIT 6 PLAN ALGEBRA II
Grades 10-12
Revised 2023

[^0]: Kenilworth Public Schools

