Kenilworth Public Schools Curriculum Guide

Content Area: Grade 8 Math
Grade: 8
BOE Approved: 8/11/2014

Revision Date: 11/9/21
Submitted by: Michelle Alvarez \& Nancy Bechtler BOE Revision Approved: N/A

Mathematics - Grade 8- Scope and Sequence

Unit 1- Real Numbers, Exponents, Scientific Notation, and Pythagorean Theorem (Go Math Modules 1, 2, \& 12)	Unit 2- Solving Equations and Systems of Equations (Go Math Modules 7 \& 8)	Unit 3- Proportional and Nonproportional Relationships and Functions (Go Math Modules 3, 4, \& 6)	Unit 4- Transformational Geometry (Go Math Modules 9 \& 10)	Unit 5- Measurement Geometry (Go Math Modules 11 \& 13)	Unit 6- Statistics (Go Math Modules 14 \& 15)
Weeks 1-8	Weeks 9-17	Weeks 18-22	Weeks 23-29	Weeks 30-34	Weeks 35-38
Unit Description: Students will rewrite rational numbers and decimals, take square roots and cube roots, and approximate irrational numbers. They will also use and apply the properties of exponents and scientific notation. In addition, they will know and apply the Pythagorean theorem in real-world situations.	Unit Description: Students will solve one step, two step, and multi-step equations. They will solve systems of equations using graphing, substitution, and elimination.	Unit Description: Students will make connections between proportional relationships, graphs of lines, and linear equations. They will be able to determine slope, the y intercept, and how to write the equation of a non-proportional line. Students will define, evaluate, and compare functions.	Unit Description: Students will be able to describe the differences between the transformations and the effect translations, rotations, reflections, and dilations have on 2 dimensional figures.	Unit Description: Students will know and apply the formulas for volume of cylinders, cones, and spheres. They will use angle relationships in parallel lines and triangles to solve real-world problems.	Unit Description: Students will construct, interpret, and organize two-way frequency tables, data, and scatter plots. They will be able to make a prediction from a scatter plot.
Unit Targets: - numbers that are not rational are called irrational - every number has a	Unit Targets: - a linear equation in one variable can result in one solution, infinitely many	Unit Targets: - a function is a rule that assigns to each input exactly one output	Unit Targets: - the sum of the interior angles of a triangle is 180 degrees - the measure of an	Unit Targets: - the sum of the interior angles of a triangle is 180 degrees	Unit Targets: - construct scatter plots - interpret scatter plots to investigate

[^0]
decimal expansion

- show that rational numbers have decimal expansions that either terminate in zeros or repeats eventually
- convert a repeating decimal to a rational number
- estimate the value of irrational numbers using rational approximations
- use rational approximations of irrational numbers to compare their size
- use rational approximations of irrational numbers to locate them on a number line
- know the properties of integer exponents
- determine whether two numerical expressions involving integer exponents are equivalent
- generate equivalent expressions using the properties of exponents
- estimate a very large

$\begin{array}{l}\text { solutions, or no } \\ \text { solution }\end{array}$	$\begin{array}{l}\text { - the graph of a } \\ \text { function is the }\end{array}$

function is the set of ordered pairs consisting of an input and the corresponding output

- describe qualitatively the functional relationships between two quantities by analyzing a graph
- sketch a graph that exhibits the qualitative features of a function given a verbal description
- the equation $y=m x+$ b defines a linear function
- interpret a set of points forming a straight line as the graph of a linear function
- graph linear equations
- give examples of nonlinear functions
- graph proportional relationships represented in different ways (i.e. ordered pairs, table, equation, phrases,
exterior angle of a triangle is equal to the sum of the two remote interior angles
- when parallel lines are cut by a transversal, corresponding, alternate interior, and alternate exterior angles are congruent
- if two sets of corresponding angles in two triangles are congruent, then the triangles are similar
- use facts about angles to construct an informal argument
- apply the formulas for volume of a cone, cylinder, or sphere in a real-world context
- calculate the volume of a cone, cylinder, or sphere
- find a missing dimension of a cone, cylinder or sphere given its volume
- the measure of an exterior angle of a triangle is equal to the sum of the two remote interior angles
- when parallel lines are cut by a transversal, corresponding, alternate interior, and alternate exterior angles are congruent
- if two sets of corresponding angles in two triangles are congruent, then the triangles are similar
- use facts about angles to construct an informal argument
- apply the formulas for volume of a cone, cylinder, or sphere in a realworld context
- calculate the volume of a cone, cylinder, or sphere
patterns of association between two quantities
- describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association
- interpret the slope and intercept in the context of bivariate measurement data using the equation of a linear model
- two-way tables can be used to show patterns of association in categorical data
- construct a two-way table summarizing data on two categorical variables collected from the same subjects
- interpret a two-way

[^1]| or very small number as a single digit times an integer power of ten
 - express how many times larger one quantity is compared to another when written as a single digit times an integer power of ten
 - add, subtract, multiply, and divide numbers expressed in scientific notation
 - add, subtract, multiply, and divide numbers where one is expressed in decimal notation and the other is expressed in scientific notation
 - choose appropriate units to represent measurements of very large or very small quantities
 - interpret scientific notation generated by technology as a number multiplied by a power of ten
 - the Pythagorean Theorem states that | graphing the equations
 - determine the number of solutions a system of two linear equations will have based upon inspection
 - solve a system of two linear equations modeling real-world and mathematical problems | - recognize that for proportional relationships, the unit rate is the slope of the graph
 compare the unit rates of two proportional relationships represented in different ways
 - explain why the slope is the same between any two distinct points on a nonvertical line by drawing similar right triangles and comparing the ratios of their sides
 derive the equation y $=m x$ for a line through the origin
 - derive the equation $y=m x+b$ for a line intercepting the y axis at b
 - construct a function to model a linear relationship between two quantities
 - determine the rate of change and initial value of a function from a description of | | - find a missing dimension of a cone, cylinder or sphere given its volume | table by identifying joint frequencies and calculating marginal frequencies
 use relative frequencies calculated for rows or columns to describe possible association between the two variables |
| :---: | :---: | :---: | :---: | :---: | :---: |

[^2]| side lengths in right triangles in realworld problems | | - informally fit a straight line for scatter plots that suggest a linear association
 - informally assess the fit of the line for a scatter plot by judging the closeness of the data points to the line
 - interpret the slope and intercept in the context of bivariate measurement data using the equation of a linear model | | |
| :---: | :---: | :---: | :---: | :---: |

Mathematics - Grade 8 Unit 1: Real Numbers

Unit Title: Real Numbers, Exponents, Scientific Notation, and Pythagorean Theorem
Unit Summary: Use real numbers, scientific notation, and the Pythagorean Theorem to solve real-world problems (Go Math Modules 1, 2, and 12)
Primary Interdisciplinary Connections: Social Studies (Geography) and Science SCI.MS-ESS1-3

Career Readiness, Life Literacies, and Key Skills: 9.2.8.CAP5, 9.2.8.CAP3, 9.2.8.CAP4

Learning Targets

NJSLS Standards: 8.NS.A.1, 8. NS.A.2, 8.EE.A.1, 8.EE.A.3, 8.EE.A.4, 8.G.B.6, 8.G.B.7, 8.G.B. 8

Computer Science and Design Thinking Standards: 9.4.8.DC6
Climate Change Standards: 9.4.8.CI1
Content Statements:
Know that numbers that are not rational are called irrational. Understand informally that

1 expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.
2 Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions
Know and apply the properties of integer exponents to generate equivalent numerical expressions.
Use numbers expressed in the form of a single digit times an integer power of 10 to estimate
4 very large or very small quantities, and to express how many times as much one is than the other.
Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology.
6 Explain a proof of the Pythagorean Theorem and its converse.
7 Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in realworld and mathematical problems in two and three dimensions.
8 Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.

Big Idea: Numbers can be expressed in a variety of ways, but still maintain the same value. We can recognize shapes and understand their properties can lead to indirect solutions to measurement problems.

Unit Essential Questions:

- How do you rewrite rational numbers and decimals, take square roots and cube roots, and approximate irrational numbers?
- How can you describe relationships between sets of real numbers?
- How do you order a set of real numbers?
- How do you develop and use the properties of integer exponents?
- How can you use scientific notation to express very large and small quantities?
- How can you use the Pythagorean

Theorem and use it to solve problems?

- How can you test the converse of the Pythagorean Theorem and use it to solve problems?
- How can you use the Pythagorean Theorem to find the distance between two points on a coordinate plane?

Unit Enduring Understandings:

Students will understand that...

- Laws of exponents can be used to find powers of monomials
- Scientific notation can be used to write large and small numbers.
- Mathematical expressions can be compared using real number properties.
- Understand and apply the Pythagorean Theorem
- Work with radicals and integer exponents.

Unit Learning Targets

Students will...

- numbers that are not rational are called irrational
- every number has a decimal expansion
- show that rational numbers have decimal expansions that either terminate in zeros or repeats eventually
- convert a repeating decimal to a rational number
- estimate the value of irrational numbers using rational approximations
- use rational approximations of irrational numbers to compare their size
- use rational approximations of irrational numbers to locate them on a number line
- know the properties of integer exponents
- determine whether two numerical expressions involving integer exponents are equivalent
- generate equivalent expressions using the properties of exponents
- estimate a very large or very small number as a single digit times an integer power of ten
- express how many times larger one quantity is compared to another when written as a single digit times an integer power of ten
- add, subtract, multiply, and divide numbers expressed in scientific notation
- add, subtract, multiply, and divide numbers where one is expressed in decimal notation and the other is expressed in scientific notation
- choose appropriate units to represent measurements of very large or very small quantities
- interpret scientific notation generated by technology as a number multiplied by a power of ten
- the Pythagorean Theorem states that the square of the hypotenuse of a right triangle is equal to the sum of the squares of the other two sides
- explain a proof of the Pythagorean Theorem
- explain a proof of the converse of the Pythagorean Theorem
- apply the Pythagorean Theorem to find the distance between two points in a coordinate system
- apply the Pythagorean Theorem to determine unknown side lengths in right triangles in twodimensional figures
- apply the Pythagorean Theorem to determine unknown side lengths in right triangles in threedimensional figures
- apply the Pythagorean Theorem to determine unknown side lengths in right triangles in realworld problems

Evidence of Learning

Summative Assessment: Benchmark \#1/Module Assessments
Formative Assessments:
- Module quizzes
- Module tests
- Exit Slips/individual wipe boards
- Open Ended questions
- Teacher observation
- Do Now/homework review
- Cooperative learning groups
- Projects with rubrics, self-evaluation

Lesson Plans

Activities/Interdisciplinary Connections	Timeframe
- Play the game Root-O! as seen in the Go Math	Weeks 1-8
Resources (Lesson 1.3)	
- Watch Real-World Video and discuss how biologists	
classify animals	
- Connect Real-World Video with how to classify	
numbers mentioned in the video	
- Analyze populations using scientific notation	
- Use Pythagorean theorem relationships to measure	
- objects that are out of reach	
- Discuss the origin of pi by researching Liu Hui of China	
and other mathematicians	

means of test taking

- Use symbolic representations, such as pictures, to assist in making language connections
- Teacher models the desired learning strategy or task, and then teacher will gradually shift responsibility to the students
- Apply a variety of strategies to comprehend vocabulary and mathematical concepts
- Assist those who require additional help and need extended time

Teacher Resources	Teacher Note
- GoMath! Textbook	
- GoMath! Resource materials	
- Technology Tools (add/delete as appropriate):	
-Google Classroom	
-Pear Deck	
-BrainPOP	
-FlipGrid	
-Kahoot	
-Kami	
-Quizizz	
(See this $\underline{\text { list for more ideas from the NJDOE) }}$	
(See this $\underline{\text { list for Kenilworth Tools and Platforms) }}$	

Differentiating Instruction:

Students with Disabilities, English Language Learners,
and Gifted \& Talented Students
Examples of Strategies and Practices that Support Students with Disabilities:

- Use of visual and multisensory formats
- Use of assisted technology
- Use of prompts
- Modification of content and student products
- Testing accommodations
- Authentic assessments

Examples of Strategies and Practices that Support Gifted \& Talented Students:

- Adjusting the pace of lessons
- Curriculum compacting
- Inquiry-based instruction
- Independent study

[^3]
Mathematics - Grade 8 Unit 2: Solving Equations and Systems of Equations

Unit Title: Solving Equations and Systems of Equations	
Unit Summary: Students will solve equations with variables on both sides and with rational number coefficients and constants and solve linear systems by using graphing, substitution, and elimination. (Go Math Modules 7 and 8)	
Primary Interdisciplinary Connections: Science	
Career Readiness, Life Literacies, and Key Skills: 9.2.8.CAP5, 9.2.8.CAP3, 9.2.8.CAP4	
Learning Targets	
NJSLS Standards: 8.EE.C.7, 8.EE.C.7b, 8.EE.C.8a, 8.EE.C.8, 8.EE.C.8c	
Computer Science and Design Thinking Standards: 9.4.8.DC6	
Climate Change Standards: 9.4.8.CI1	
Content Statements:	
1	Solve linear equations in one variable.
2	Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.
3	Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.
4	Analyze and solve pairs of simultaneous linear equations.
5	Solve real-world and mathematical problems leading to two linear equations in two variables.

Big Idea: To apply mathematics to problems that arise in everyday life, society, and the workplace. Students use information about two related real-world situations to write and solve an equation with the same variable on both sides of the equation.

Unit Essential Questions:

- How can you represent and solve equations with the variable on both sides?
- How can you solve equations with rational numbers and coefficients?
- How do you use the Distributive Property to solve equations?
- How can you give examples of equations with a given number of solutions?
- How can you solve a system of equations by graphing, substitution, and elimination?

Unit Enduring Understandings:

Students will understand that:

- Model and solve an equation with variables on both sides
- Write a real world situation that can be modeled by a given equation
- Pairs of simultaneous linear equations can be analyzed and solved
- Patterns and relationships can be represented graphically, numerically, and symbolically
- How do you solve a system with no solutions or infinitely many solutions?

Unit Learning Targets

Students will...

- a linear equation in one variable can result in one solution, infinitely many solutions, or no solution
- show which of these outcomes is the case by transforming the original equation into the form x $=a, a=a$, or $a=b$
- solve linear equations in one variable with rational number coefficients, including equations that require expanding expressions using the distributive property and combining like terms
- solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs
- points of intersection satisfy both equations simultaneously
- solve systems of two linear equations in two variables algebraically
- estimate solutions of two linear equations in two variables by graphing the equations
- determine the number of solutions a system of two linear equations will have based upon inspection
- solve a system of two linear equations modeling real-world and mathematical problems

Evidence of Learning

Summative Assessment: Unit Assessment	
Formative Assessments: - Module quizzes - Module tests - Exit Slips/individual wipe boards - Open Ended questions - Teacher observation - Do Now/homework review - Cooperative learning groups - Projects with rubrics, self-evaluation	
Lesson Plans	
Activities/Interdisciplinary Connections	Timeframe
- Solve real-world situations that can be modeled using multi step equations and systems of equations (purchasing tile, rental situations, monetary comparisons) - Science - Research careers in math such as hydraulic engineering (www.ams.org for research) - Language arts - focus on what information is important,	Weeks 9-17

identify the actual equation(s) being asked, and illustrate the equation. - Language arts - create a concept web using the vocabulary from the unit	
Teacher Resources	Teacher Note
- GoMath! Textbook - GoMath! Resource materials - Technology Tools (add/delete as appropriate): -Google Classroom -Seesaw -Pear Deck -BrainPOP -Book Creator -FlipGrid -Kahoot -Kami -Quizizz (See this list for more ideas from the NJDOE) (See this list for Kenilworth Tools and Platforms)	
Differentiating Instruction: Students with Disabilities, English Language Learners, and Gifted \& Talented Students	
Examples of Strategies and Practices that Support Students with Disabilities: - Use of visual and multisensory formats - Use of assisted technology - Use of prompts - Modification of content and student products - Testing accommodations - Authentic assessments	
Examples of Strategies and Practices that Support Gifted \& Talented Students: - Adjusting the pace of lessons - Curriculum compacting - Inquiry-based instruction - Independent study - Higher-order thinking skills - Interest-based content - Student-driven instruction - Real-world problems and scenarios	

Examples of Strategies and Practices that Support English Language Learners:

- Pre-teaching of vocabulary and concepts
- Visual learning, including graphic organizers
- Use of cognates to increase comprehension
- Teacher modeling
- Pairing students with beginning English language skills with students who have more advanced English language skills
- Scaffolding
-Word walls
-Sentence frames
-Think-pair-share
-Cooperative learning groups

Mathematics - Grade 8 Unit 3: Proportional and Non-proportional Relationships \& Functions

Unit Title: Proportional and Non-proportional Relationships and Functions				
Unit Summary: Students will demonstrate and effectively communicate their mathematical understanding of ratios and proportional relationships with a focus on expressions and equations. Students will also learn the concept of a function and why functions are necessary for describing algebraic concepts in everyday life. (Go Math Modules, 3, 4, \& 6)				
Primary Interdisciplinary Connections: Language Arts				
Career Readiness, Life Literacies, and Key Skills: 9.2.8.CAP5, 9.2.8.CAP3, 9.2.8.CAP4				
	Learning Targets			
NJSLS Standards: 8.EE.B.5, 8.EE.B.6, 8.F.A.1, 8.F.A.2, 8.F.A.3, 8.F.B.4, 8.F.B.5, 8.SP.A.1, 8.SP.A.2, 8.SP.A.3				
Computer Science and Design Thinking Standards: 9.4.8.DC6				
Climate Change Standards: 9.4.8.CI1				
Content Statements:				
1	Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.			
2	Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.			
3	Interpret the equation $y=m x+b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear.			
4	Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways.			
5	Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $y=m x ~ f o r ~ a ~ l i n e ~ t h r o u g h ~$			
the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at b.		$	$	Construct a function to model a linear relationship between two quantities. Determine the
:---	:---			
rate of change and initial value of the function from a description of a relationship or from				
two (x, y) values, including reading these from a table or from a graph. Interpret the rate of				
change and initial value of a linear function in terms of the situation it models, and in terms				
of its graph or a table of values.				

	variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit (e.g. line of best fit) by judging the closeness of the data points to the line.	
	Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept.	
Big Idea: Students will use linear equations and functions to solve real-world problems.		
Unit Essential Questions: - How can you use tables, graphs, and equations to represent proportional and non-proportional situations? - How do you write an equation to model a linear relationship given a graph or a description? - How does an equation with two variables represent a line in the coordinate plane? - How can you identify and represent functions?		
Unit Learning Targets Students will... - a function is a rule that assigns to each input exactly one output - the graph of a function is the set of ordered pairs consisting of an input and the corresponding output - describe qualitatively the functional relationships between two quantities by analyzing a graph - sketch a graph that exhibits the qualitative features of a function given a verbal description - the equation $y=m x+b$ defines a linear function - interpret a set of points forming a straight line as the graph of a linear function - graph linear equations - give examples of nonlinear functions - graph proportional relationships represented in different ways (i.e. ordered pairs, table, equation, phrases, etc.) - recognize that for proportional relationships, the unit rate is the slope of the graph - compare the unit rates of two proportional relationships represented in different ways - explain why the slope is the same between any two distinct points on a non-vertical line by drawing similar right triangles and comparing the ratios of their sides - derive the equation $y=m x$ for a line through the origin - derive the equation $y=m x+b$ for a line intercepting the y-axis at b - construct a function to model a linear relationship between two quantities - determine the rate of change and initial value of a function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph		

- interpret the rate of change and initial value of a function in terms of the situation it models
- compare properties such as rate of change, intercepts, domain and range of two functions each represented in a different way
- construct scatter plots
- interpret scatter plots to investigate patterns of association between two quantities
- describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association
- straight lines are used to model relationships between two quantitative variables
- informally fit a straight line for scatter plots that suggest a linear association
- informally assess the fit of the line for a scatter plot by judging the closeness of the data points to the line
- interpret the slope and intercept in the context of bivariate measurement data using the equation of a linear model

Evidence of Learning

Summative Assessment: Module Assessments
Formative Assessments:
- Module quizzes
- Module tests
- Exit Slips/individual wipe boards
- Open Ended questions
- Teacher observation
- Do Now/homework review
- Cooperative learning groups
- Projects with rubrics, self-evaluation

Lesson Plans

Activities/Interdisciplinary Connections	Timeframe
- Language Arts: Use a word find puzzle to preview	Weeks 18-22
important vocabulary concepts from the module	
- Watch Real-World Video about the measurements needs	
to find the speed/rate of each boat	
- Create a Key-Term Fold to highlight important	
definitions and vocabulary from the module (i.e, use to	
visualize the similarities and differences between tables,	
equations, and graphs	
- Help students understand the meanings of rise and run,	
have them compare the slope of stairwells in various	

locations - Make a picture on a coordinate plane to show accurate ordered pairs	
Teacher Resources	
- GoMath! Textbook	
- GoMath! Resource materials	
- Technology Tools:	
-Google Classroom	
-Pear Deck	
-BrainPOP	
-FlipGrid	
-Kahoot	
-Kami	
-Quizizz	
(See this list for more ideas from the NJDOE)	
(See this list for Kenilworth Tools and Platforms)	
Students with Disabilities, English Language Learners,	

- Use of cognates to increase comprehension
- Teacher modeling
- Pairing students with beginning English language skills with students who have more advanced

English language skills

- Scaffolding
-Word walls
-Sentence frames
-Think-pair-share
-Cooperative learning groups

Mathematics - Grade 8 Unit 4: Transformational

Geometry

Unit Title: Transformational Geometry		
Unit Summary: Students will learn about transformations on the coordinate plane and apply their properties to determine congruence by a sequence of rotations, reflections, and translations. They will learn to manipulate two and three dimensional shapes and angles. They will discover similar figures with dilations. (Go Math Modules 9 and 10)		
Primary Interdisciplinary Connections: Science, Language Arts		
Career Readiness, Life Literacies, and Key Skills: 9.2.8.CAP5, 9.2.8.CAP3, 9.2.8.CAP4		
Learning Targets		
NJSLS Standards: 8.G.A.1, 8.G.A.2, 8.G.A.3, 8.G.A.4		
Computer Science and Design Thinking Standards: 9.4.8.DC6		
Climate Change Standards: 9.4.8.CI1		
Content Statements:		
1	Verify experimentally the properties	tions, reflections, and translations
2	Understand that a two-dimensional fig obtained from the first by a sequence congruent figures, describe a sequenc	is congruent to another if the second can be tations, reflections, and translations; given two exhibits the congruence between them.
3	Describe the effect of dilations, transla figures using coordinates.	s, rotations, and reflections on two-dimensional
4	Understand that a two-dimensional fig from the first by a sequence of rotations, similar two-dimensional figures, descr them.	is similar to another if the second can be obtained reflections, translations, and dilations; given two a sequence that exhibits the similarity between
Big Idea: Students will learn how to describe the properties of transformations and their effect on the congruence and orientation of figures.		
	nit Essential Questions: How would you describe the effect of ransformations on geometric figures? What properties of transformations produce congruent and similar figures?	Unit Enduring Understandings: Students will understand that: - Congruence and similarity using physical models or geometry software - Apply properties of congruence to lines, angles, and shapes

Unit Learning Targets

Students will...

- verify that when a reflection, rotation, and/or translation is performed, lines are transformed to lines, and line segments to line segments of the same length
- verify that when a reflection, rotation, and/or translation is performed, angles are transformed to angles of the same measure
- verify that when a reflection, rotation, and/or translation is performed, parallel lines are transformed to parallel lines
- two figures are congruent if one can be obtained from the other by a sequence of rotations, reflections, and/or translations
- describe a sequence of transformations that maps one congruent figure onto another
- dilate, translate, rotate, and reflect two-dimensional figures on a coordinate plane
- describe the effects of dilations, translations, rotations, and reflections using coordinates
- two figures are similar if one can be obtained from the other by a sequence of dilations and rotations, reflections, and/or translations
- describe a sequence of transformations that maps one similar figure onto another

Evidence of Learning

Summative Assessment: Modular Assessments

Formative Assessments:

- Module quizzes
- Module tests
- Exit Slips/individual wipe boards
- Open Ended questions
- Teacher observation
- Do Now/homework review
- Cooperative learning groups
- Projects with rubrics, self-evaluation

Lesson Plans

Activities/Interdisciplinary Connections	Timeframe
- Create a design and transform it on the coordinate plane	Weeks 23-29
using translations, rotations, reflections, and dilations	
- Research a contractor and how they utilize	
measurements and scale models to determine financial	
management.	
- Use a word search to preview important vocabulary	

from the module	
- Have students work in groups to create a pattern of	
dance steps formed by translating shapes, which	
represent dancers’ feet, on a grid.	
- Create a strip pattern, such as a snowflake or sun, to	
demonstrate a translation	
- Use whiteboards to demonstrate understanding of	
transformations	
Teacher Resources	
- GoMath! Textbook	
- GoMath! Resource materials	
- Technology Tools:	
-Google Classroom	
-Pear Deck	
-BrainPOP	
-FlipGrid	
-Kahoot	
-Kami	
-Quizizz	
(See this list for more ideas from the NJDOE)	
(See this list for Kenilworth Tools and Platforms)	

[^4]
Mathematics - Grade 8 Unit 5: Measurement Geometry

Unit Title: Measurement Geometry		
Unit Summary: Students will draw conclusions about the angles formed by parallel lines cut by a transversal, the angles formed in a triangle, and the volume of cylinders, cones, and spheres. (Go Math Modules 11 \& 13)		
Primary Interdisciplinary Connections: Science and Language Arts		
Career Readiness, Life Literacies, and Key Skills: 9.2.8.CAP5, 9.2.8.CAP3, 9.2.8.CAP4		
Learning Targets		
NJSLS Standards: 8.G.A.5, 8.G.C. 9		
Computer Science and Design Thinking Standards: 9.4.8.DC6		
Climate Change Standards: 9.4.8.CI1		
Content Statements:		
1	Use informal arguments to establish facts about the angles created when parallel lin criterion for similarity of triangles.	about the angle sum and exterior angle of triangles, s are cut by a transversal, and the angle-angle
2	Know the formulas for the volumes of co real-world and mathematical problems.	es, cylinders, and spheres and use them to solve
Big Idea: Students learn to recognize the relationships among the angles formed when two parallel lines intersect a transversal and explore ways to find the volume of cylinders, cones, and spheres.		
Unit Essential Questions: - How can you use what you know about transformations to identify relationships between angles formed by a pair of parallel lines and a line that intersects them? - How can we show that two lines are parallel? - How do different angle pairs in triangles help you to identify missing angle measures and angle relationships in triangles? - How can you determine the volume of cylinders, cones, and spheres?		Unit Enduring Understandings: Students will understand that... - Apply properties of congruence to lines and angles - Solve real world and mathematical problems involving cylinders, cones, and spheres.
Unit Learning Targets Students will... - the sum of the interior angles of a triangle is 180 degrees - the measure of an exterior angle of a triangle is equal to the sum of the two remote interior		

angles

- when parallel lines are cut by a transversal, corresponding, alternate interior, and alternate exterior angles are congruent
- if two sets of corresponding angles in two triangles are congruent, then the triangles are similar
- use facts about angles to construct an informal argument
- apply the formulas for volume of a cone, cylinder, or sphere in a real-world context
- calculate the volume of a cone, cylinder, or sphere
- find a missing dimension of a cone, cylinder or sphere given its volume

Evidence of Learning

Summative Assessment: Module Assessments	
Formative Assessments:	
- Module quizzes	
- Module tests	
- Exit Slips/individual wipe boards	
- Open Ended questions	
- Teacher observation	
- Do Now/homework review	
- Cooperative learning groups	
- Projects with rubrics, self-evaluation	
Activities/Interdisciplinary Connections	
Lesson Plans	
- Use Maps to investigate angle relationships - Use real world objects to compare price points and volume of shapes	
- Create 3-D representations of various shapes - To determine prior knowledge, use a word splash of previous vocabulary learned	
Teacher Resources	
- GoMath! Textbook	Timeframe
- GoMath! Resource materials 30-34	
- Technology Tools:	
-Google Classroom	
-Pear Deck	

-BrainPOP

-FlipGrid
-Kahoot
-Kami
-Quizizz
(See this list for more ideas from the NJDOE) (See this list for Kenilworth Tools and Platforms)

Differentiating Instruction:
 Students with Disabilities, English Language Learners, and Gifted \& Talented Students

Examples of Strategies and Practices that Support Students with Disabilities:

- Use of visual and multisensory formats
- Use of assisted technology
- Use of prompts
- Modification of content and student products
- Testing accommodations
- Authentic assessments

Examples of Strategies and Practices that Support Gifted \& Talented Students:

- Adjusting the pace of lessons
- Curriculum compacting
- Inquiry-based instruction
- Independent study
- Higher-order thinking skills
- Interest-based content
- Student-driven instruction
- Real-world problems and scenarios

Examples of Strategies and Practices that Support English Language Learners:

- Pre-teaching of vocabulary and concepts
- Visual learning, including graphic organizers
- Use of cognates to increase comprehension
- Teacher modeling
- Pairing students with beginning English language skills with students who have more advanced English language skills
- Scaffolding
-Word walls
-Sentence frames
-Think-pair-share
-Cooperative learning groups

Mathematics - Grade 8 Unit 6: Statistics

Unit Title: Statistics		
Unit Summary: Students learn to represent data in a scatter plot, describe associations in data in scatter plots, make predictions from a scatter plot or trend line. They will create and analyze a two-way table to discover any association between the variables. (Go Math Modules 14 \& 15)		
Primary Interdisciplinary Connections: Science		
Career Readiness, Life Literacies, and Key Skills: 9.2.8.CAP5, 9.2.8.CAP3, 9.2.8.CAP4		
Learning Targets		
NJSLS Standards: 8.SP.A.1, 8.SP.A.3, 8.SP.A. 4		
Computer Science and Design Thinking Standards: 9.4.8.DC6		
Climate Change Standards: 9.4.8.CI1		
Content Statements:		
1	Construct and interpret scatter plots fo association between two quantities. D negative association, linear association,	variate measurement data to investigate patterns of be patterns such as clustering, outliers, positive or d nonlinear association.
2	Use the equation of a linear model to data, interpreting the slope and interc	problems in the context of bivariate measurement
3	Understand that patterns of association displaying frequencies and relative fre two-way table summarizing data on two subjects. Use relative frequencies calc association between the two variables.	also be seen in bivariate categorical data by ncies in a two-way table. Construct and interpret a categorical variables collected from the same ed for rows or columns to describe possible
Big Idea: Students will construct scatter plots and two-way frequency tables to display and interpret data.		
	it Essential Questions: What inferences can be collected and drawn from sets of data when having positive, negative, or no association? How can you construct and interpret scatter plots? How can you use a trend line to make a prediction from a scatter plot?	Unit Enduring Understandings: Students will understand that... - Two sets of numerical data can be graphed as ordered pairs. If the two sets of data are related, a line on the graph can be used to estimate or predict values. - Although scatter plots and trend lines reveal a pattern, the relationship of the variables may indicate a correlation. - You can use two-way frequency tables to organize and analyze real-world data that are

- Climate Change Activity - Discuss the relationship between a polluted town and the population's health versus a clean town and their health
- Research and record relevant data to investigate climate change questions.
- Have students choose a topic to survey their peers and create a relevant way to express their data
- Use their data to extract clusters, trend lines, and outliers

Teacher Resources	
- GoMath! Textbook	Teacher Note
- GoMath! Resource materials	
- Technology Tools:	
-Google Classroom	
-Pear Deck	
-BrainPOP	
-FlipGrid	
-Kahoot	
-Kami	
-Quizizz	
(See this list for more ideas from the NJDOE)	
(See this list for Kenilworth Tools and Platforms)	

Differentiating Instruction:

Students with Disabilities, English Language Learners,

and Gifted \& Talented Students

Examples of Strategies and Practices that Support Students with Disabilities:

- Use of visual and multisensory formats
- Use of assisted technology
- Use of prompts
- Modification of content and student products
- Testing accommodations
- Authentic assessments

Examples of Strategies and Practices that Support Gifted \& Talented Students:

- Adjusting the pace of lessons
- Curriculum compacting
- Inquiry-based instruction
- Independent study
- Higher-order thinking skills
- Interest-based content

[^5]
[^0]: Kenilworth Public Schools

[^1]: Kenilworth Public Schools

[^2]: Kenilworth Public Schools

[^3]: - Higher-order thinking skills
 - Interest-based content
 - Student-driven instruction
 - Real-world problems and scenarios

 Examples of Strategies and Practices that Support English Language Learners:

 - Pre-teaching of vocabulary and concepts
 - Visual learning, including graphic organizers
 - Use of cognates to increase comprehension
 - Teacher modeling
 - Pairing students with beginning English language skills with students who have more advanced English language skills
 - Scaffolding
 -Word walls
 -Sentence frames
 -Think-pair-share
 -Cooperative learning groups

[^4]: - Student-driven instruction
 - Real-world problems and scenarios

 Examples of Strategies and Practices that Support English Language Learners:

 - Pre-teaching of vocabulary and concepts
 - Visual learning, including graphic organizers
 - Use of cognates to increase comprehension
 - Teacher modeling
 - Pairing students with beginning English language skills with students who have more advanced English language skills
 - Scaffolding
 -Word walls
 -Sentence frames
 -Think-pair-share
 -Cooperative learning groups

[^5]: - Student-driven instruction
 - Real-world problems and scenarios

 Examples of Strategies and Practices that Support English Language Learners:

 - Pre-teaching of vocabulary and concepts
 - Visual learning, including graphic organizers
 - Use of cognates to increase comprehension
 - Teacher modeling
 - Pairing students with beginning English language skills with students who have more advanced English language skills
 - Scaffolding
 -Word walls
 -Sentence frames
 -Think-pair-share
 -Cooperative learning groups

