Kenilworth Public Schools Curriculum Guide

Content Area: Algebra II/Pre-Calculus
Grade: 11-12
BOE Approved: 4/6/20

Revision Date: N/A
Submitted by: Mendy Petti \& Lynne Smith
BOE Revision Approved: N/A

Algebra 2/PreCalculus - Grades 10-12 Scope and Sequence

Unit 1Quadratic Functions \& Factoring	Unit 2- Polynomials and Polynomial Functions	Unit 3- Rational Functions	Unit 4- Rational Exponents and Radical Functions	Unit 5Exponential and Logarithmic Functions	Unit 6Sequences and Series, Data Analysis	Unit 7- Analytic Trigonometry, a Unit Circle Approach	Unit 8Conic Sections
Weeks 1-2 (Review)	Weeks 3-8	Weeks 9-15	Weeks 16-19	Weeks 20-24	Weeks 25-29	Weeks 30-34	Weeks 35-39
Unit Description: Graph, analyze, model, and solve quadratic functions. (Chapter 1)	Unit Description: Use properties of exponents. Graph, analyze, model, and solve polynomial functions. (Chapter 2, 7.1)	Unit Description: Graph, analyze, model and solve rational functions. (Alg2 Chapter 5, Symmetries (PreCalc 1.1, 1.4) Alg2 Section 7.5)	Unit Description: Understand and use rational exponents. Analyze and graph radical functions. Solve radical equations. (Chapter 3)	Unit Description: Graph, analyze, model, and solve exponential and logarithmic functions. (Chapter 4)	Unit Description: Define, analyze, and find sums of sequences and series. Apply the fundamentals of data analysis and probability distributions. (PreCalc Chap 9, sections 1-3,6, \& Alg 2-6.3)	Unit Description: Understand and Apply Trigonometric Properties and Identities. (PreCalc Chap 5)	Unit Description: Understand and apply Conic Sections (PreCalc Chap 8)
Unit Targets: Graph quadratic functions in standard form. Graph quadratic functions in vertex or	Unit Targets: - Use Properties of Exponents. - Evaluate and Graph Polynomial Functions. - Add, Subtract, and Multiply	Unit Targets: - Model Inverse and Joint Variation. - Graph Simple Rational Functions. - Graph General Rational	Unit Targets: - Evaluate nth Roots and use Rational Exponents. - Apply Properties of Rational Exponents.	Unit Targets: - Graph exponential growth functions. - Graph exponential decay functions.	Unit Targets: - Define and use Sequences and Series. - Analyze arithmetic sequences and series. - Analyze	Unit Targets: - Verify Trigonometric Identities. - Solve Trigonometric Equations. - Write Trigonometric	Unit Targets: - Find the inclination of a line, the angle between two lines, and the distance between a point and a line.

intercept form. - Solve $x^{2}+b x+c=0$ by factoring. - Solve $a x^{2}+b x+c=0$ by factoring. - Solve quadratic equations by find square roots. - Perform Operations with complex numbers. - Solve Quadratics by completing the square. - Use the Quad Formula \& the discriminant. - Graph and Solve Quad. Inequalities.	Polynomials. - Factor and Solve Polynomial Equations. - Apply the Remainder and Factor Theorems. - Find Rational Zeros. - Apply the Fundamental Theorem of Algebra. - Analyze Graphs of Polynomial Functions. - Solve Systems with Non-linear Equations	Functions. - Multiply and Divide Rational Expressions. - Add and Subtract Rational Expressions. - Solve Rational Equations. - Describe and Compare Function Characteristics. - Symmetries of Functions (1.1) - Even and Odd Functions (1.4) - Find Partial Fraction Decomposition (7.5)	- Perform Function Operations and Composition. - Use Inverse Functions. - Graph Square Root and Cube Root Functions. - Solve Radical Equations.	- Use functions involving e. - Evaluate logarithms and graph logarithmic functions. - Apply properties of logarithms. - Solve exponential and logarithmic equations. - Create and apply exponential and power functions.	geometric sequences and series. - Evaluate Sums of infinite geometric series. - Counting Principles - Construct and interpret Normal Distributions.	Functions and Models. - Apply Sum and Difference Formulas. - Apply MultipleAngle Formulas.	- Recognize assorted conic sections as the intersections of a plane and a double-napped cone. - Write the standard form of the equation of a parabola, ellipse, and hyperbola. - Use properties of parabolas, ellipses, and hyperbolas to solve real-life problems.

Algebra II/PreCalculus - Grades 10-12 Unit One

Unit Learning Targets

Students will...

- Graph quadratic functions in standard form.
- Graph quadratic functions in vertex or intercept form.
- Solve $x^{2}+b x+c=0$ by factoring.
- Solve $\mathrm{ax}^{2}+b x+c=0$ by factoring.
- Solve quadratic equations by find square roots.
- Perform Operations with complex numbers.
- Solve Quadratics by completing the square.
- Use the Quadratic Formula and the discriminant.
- Graph and Solve Quadratic Inequalities.

Evidence of Learning

Summative Assessment: Quizzes, Tests
Formative Assessments:

- Homework
- Classwork
- Other activities at teacher's discretion

Lesson Plans

Activities/Interdisciplinary Connections	Timeframe		
- Graph the parent function for quadratic functions,			
identify the characteristics of the graph, and explore the			
effects of changing the coefficients of quadratic	20 minutes		
functions in standard form.			
1.Graph the parent function.			
2.Identify the vertex and axis of symmetry.			
3.Explore the effect of changing the coefficient "a" to			
values greater than and less than one and to positive			
and negative values.		\quad	4.Explore the effect of adding a "c" coefficient and
:---			
changing its value.			
5.Explore the effect of adding a "b" coefficient and			
changing its value.			

1.Given the model function, calculate times for objects to fall to earth from various heights. Discuss the relationship between the height and the time to drop to the earth. Demonstrate with actual objects.	
Discuss that mass does not affect the time to drop	
(assuming negligible air resistance).	
2.Extend the discussion to include the path of all	
objects in flight, such as that of a batted baseball.	
Discuss the independence of horizontal and vertical	
motion.	

[^0]
Algebra I/PreCalculus - Grades 10-12 Unit Two

Unit Title: Polynomials and Polynomial Functions (Chapter 2, 7.1)
Unit Summary: Use properties of exponents. Graph, analyze, model, and solve polynomial functions.
Primary Interdisciplinary Connections: Business, Social Studies, Science
$21{ }^{\text {st }}$ Century Career and Life Themes: Global Awareness, Financial, Economic, Business and Entrepreneurial Literacy, Life and Career Skills, Information Literacy

Learning Targets

NJSLS Standards: 9-12.N.RN.1, 9-12.F.IF.7c, 9-12. A.APR.1, 9-12.A.SSE.2, 9-12.A.APR.2, 9-12.N.CN. 9
Technology Standards: 8.1.12.A.3, 8.1.12.C. 1
Content Statements:

1	Properties of Exponents
2	Evaluate and Graph Polynomial Functions
3	Add, Subtract, and Multiply Polynomials
4	Polynomial Equations
5	Remainder and Factor Theorems
6	Rational Zeros
7	Fundamental Theorem of Algebra
8	Analyze Graphs Polynomial Functions

Big Idea: Perform Operations on Polynomial expressions and graph polynomial functions.

Unit Essential Questions:

- How are addition, subtraction, multiplication, and division applied to polynomials?
- How are polynomials factored?
- What are the shapes and characteristics of the graphs of polynomial functions?

Unit Enduring Understandings:

- Operations can be performed on polynomials.
- Polynomials can be factored using a variety of techniques.
- The number of solutions of polynomial functions is at most the degree.
- The domain is the set of all real numbers and the functions are continuous.

Unit Learning Targets

Students will...

- Use Properties of Exponents.
- Evaluate and Graph Polynomial Functions.
- Add, Subtract, and Multiply Polynomials.
- Factor and Solve Polynomial Equations.
- Apply the Remainder and Factor Theorems.
- Find Rational Zeros.
- Apply the Fundamental Theorem of Algebra.
- Analyze Graphs of Polynomial Functions.

Evidence of Learning

Summative Assessment: Quizzes, Tests

Formative Assessments:

- Homework
- Classwork
- Other activities at teacher's discretion

Lesson Plans	
Activities/Interdisciplinary Connections	Timeframe
- Model volumes of geometric shapes with polynomial	
functions: Given a rectangle, cylinder, and pyramid,	
each with dimensions that include variables, find the	
associated volumes. Include binomials as needed (see	
pages 92 and 108).	20 minutes
- Explore the graphs of polynomial functions:	
1. Graph a cubic function with a positive leading	
coefficient and a cubic function with a negative	
leading coefficient, on the same coordinate	
plane. Note the characteristics of the graphs.	
(see page 98 example \#5 for possible functions	
to use)	25 minutes
2. Graph a quartic function with a positive leading	
coefficient and a quartic function with a negative	
leading coefficient, on the same coordinate	
plane. Note the characteristics of the graphs (see	
page 98 example \#5 for possible functions to	
use).	
3. Summarize the observations. Make conclusions	

about end behavior (see page 97). 1.objects in flight, such as that of a batted baseball. Discuss the independence of horizontal and vertical motion. 2.Find maximum heights of objects in flight.	
Teacher Resources	Teacher Note
- Graphing software projected on a large screen - Actual objects of various weights to drop as demonstrations - Blackboard or whiteboard	If all students are provided graphing calculators, add an individual practice exercise to the first activity
Differentiating Instruction: Students with Disabilities, English Language Learners, and Gifted \& Talented Students	
Examples of Strategies and Practices that Support Students with Disabilities: - Use of visual and multisensory formats - Use of assisted technology - Use of prompts - Modification of content and student products - Testing accommodations - Authentic assessments	
Examples of Strategies and Practices that Support Gifted \& Talented Students: - Adjusting the pace of lessons - Curriculum compacting - Inquiry-based instruction - Independent study - Higher-order thinking skills - Interest-based content - Student-driven instruction - Real-world problems and scenarios	
Examples of Strategies and Practices that Support English Language Learners: - Pre-teaching of vocabulary and concepts - Visual learning, including graphic organizers - Use of cognates to increase comprehension - Teacher modeling - Pairing students with beginning English language skills with students who have more advanced English language skills - Scaffolding -Word walls -Sentence frames	

-Think-pair-share

-Cooperative learning groups

Algebra II/PreCalculus - Grades 10-12 Unit Three

Unit Title: Rational Functions (Alg 2 text Chapter 5, 7.5 and PreCalc text 1.1, 1.4)		
Unit Summary: Graph, analyze, model and solve rational functions		
Primary Interdisciplinary Connections: Business, Social Studies, Science		
$\mathbf{2 1}^{\text {st }}$ Century Career and Life Themes: Global Awareness, Financial, Economic, Business and Entrepreneurial Literacy, Life and Career Skills, Information Literacy		
Learning Targets		
NJSLS Standards: 9-12.A.CED.2, 9-12.F.IF.7d, 9-12.A.APR.7, 9-12.A.REI.2, 9-12.F.IF.9		
Technology Standards: 8.1.12.A.3, 8.1.12.C. 1		
Content Statements:		
1	Inverse and Joint Variation	
2	Simple Rational Functions	
3	General Rational Functions	
4	Multiply and Divide Rational Expression	
5	Add and Subtract Rational Expressions	
6	Rational Equations	
7	Characteristics of Function	
8	Symmetries of Graphs	
9	Even and Odd Functions	
10	Partial Fraction Decomposition	
Big Idea: Functions with variables in the denominator are defined as rational and can be used to model real-life situations.		
Unit Essential Questions: - What are possible characteristics of the graphs of rational functions? - What happens when the denominator of a rational expression/function becomes zero? - How do we solve rational equations?		Unit Enduring Understandings: - The domain of rational functions may not be the set of all real numbers. - The graphs of rational functions may contain holes and/or asymptotes. - There are various ways to solve rational equations.

Unit Learning Targets

Students will...

- Model Inverse and Joint Variation.
- Graph Simple Rational Functions.
- Graph General Rational Functions.
- Multiply and Divide Rational Expressions.
- Add and Subtract Rational Expressions.
- Solve Rational Equations.
- Describe and Compare Function Characteristics.
- Test for Symmetries of Graphs
- Determine whether a function is even, odd, or neither
- Find Partial Fraction Decompositions

Evidence of Learning

Summative Assessment: Quizzes, Tests
Formative Assessments:

- Homework
- Classwork
- Other activities at teacher's discretion

Lesson Plans

Activities/Interdisciplinary Connections	Timeframe
- Given that two variables vary inversely, and given one	
pair of values that satisfy the relationship, write an	
equation for the function. Repeat this for several	
different inverse variation functions. Notice a pattern in	
this process.	15 minutes
- Given one inverse variation function, one rational	
function that has a hole in the graph, one rational	
function that has a single vertical asymptote (not at	
x=0), and one rational function that has two vertical	
asymptotes:	
1. Discuss values that would not be possible for x.	
Describe the domain for each function.	
2. Display the graphs of each function to illustrate	
that these values for x indeed cannot exist.	20 minutes

Teacher Resources	Teacher Note
- Graphing software projected on a large screen	$\begin{array}{c}\text { If all students have access to } \\ \text { - Actual objects of various weights to drop as } \\ \text { demonstrations }\end{array}$
- Blackboard or whiteboard	
graph the functions individually in	
order to make the observations	

Algebra II/PreCalculus - Grades 10-12 Unit Four

Unit Learning Targets

Students will...

- Evaluate nth Roots and use Rational Exponents.
- Apply Properties of Rational Exponents.
- Perform Function Operations and Composition.
- Use Inverse Functions.
- Graph Square Root and Cube Root Functions.
- Solve Radical Equations.

Evidence of Learning

Summative Assessment: Quizzes, Tests

Formative Assessments:

- Homework
- Classwork
- Other activities at teacher's discretion

Lesson Plans	
- Simplify given nth roots where n=2, 3, 4 and 5. List	
perfect squares, perfect cubes, perfect powers of four,	
and perfect powers of five. Discuss a general procedure	
for simplifying roots.	
- Graph the parent function for square roots and explore	
the characteristics of the graph.	
1. Graph the parent function for square roots	
2. Change the leading coefficient to values that are	
less than and greater than one. Note the effect on	
the graph.	

Algebra II/PreCalculus - Grades 10-12 Unit Five

- Evaluate logarithms and graph logarithmic functions.
- Apply properties of logarithms.
- Solve exponential and logarithmic equations.
- Create and apply exponential and power functions.

Evidence of Learning

Summative Assessment: Quizzes, Tests

Formative Assessments:

- Homework
- Classwork
- Other activities at teacher's discretion

Lesson Plans

Activities/Interdisciplinary Connections	Timeframe
- Model a family tree with an exponential growth function. 1. Beginning with oneself, draw a family tree for about four generations. 2. Make a table of values for the number of generations, and the corresponding numbers of ancestors. 3. Explore the pattern. Write a function for the number of ancestors as a function of the generation. Determine the number of ancestors one has going back for a large number of generations. - Explore the graphs of exponential decay functions. 1. Graph the parent function for exponential decay functions. 2. Change the value and sign of the leading coefficient. Note the effect on the graph. 3. Add constants that translate the graph. Note the effect on the graph.	20 minutes 20 minutes
Teacher Resources	Teacher Note
- Graphing software projected on a large screen - Blackboard or whiteboard	If all students have graphing calculators, the graphs can be made individually and the same changes

	Differentiating Instruction: Students with Disabilities, English Language Learners, and Gifted \& Talented Students Examples of Strategies and Practices that Support Students with Disabilities: - Use of visual and multisensory formats - Use of assisted technology - Use of prompts - Modification of content and student products - Testing accommodations - Authentic assessments Examples of Strategies and Practices that Support Gifted \& Talented Students: - Adjusting the pace of lessons - Curriculum compacting - Inquiry-based instruction - Independent study - Higher-order thinking skills - Interest-based content - Student-driven instruction - Real-world problems and scenarios Examples of Strategies and Practices that Support English Language Learners: - Pre-teaching of vocabulary and concepts - Visual learning, including graphic organizers - Use of cognates to increase comprehension - Teacher modeling - Pairing students with beginning English language skills with students who have more advanced English language skills - Scaffolding - Word walls - Sentence frames - Think-pair-share - Cooperative learning groups

Algebra II/PreCalculus - Grades 10-12 Unit 6

- Construct and interpret Normal Distributions.	
Evidence of Learning	
Summative Assessment: Quizzes, Tests	
Formative Assessments: - Homework - Classwork - Other activities at teacher's discretion	
Lesson Plans	
Activities/Interdisciplinary Connections	Timeframe
- Investigate an infinite geometric series with the activity on page 459. - Find the normal distribution of a set of data and analyze variations	30 minutes 40 minutes
Teacher Resources	Teacher Note
- Graphing software projected on a large screen - Blackboard or whiteboard	If all students have graphing calculators, the graphs can be made individually and the same changes and observations can be made.
Differentiating Instruction: Students with Disabilities, English Language Learners, and Gifted \& Talented Students	

Examples of Strategies and Practices that Support Students with Disabilities:

- Use of visual and multisensory formats
- Use of assisted technology
- Use of prompts
- Modification of content and student products
- Testing accommodations
- Authentic assessments

Examples of Strategies and Practices that Support Gifted \& Talented Students:

- Adjusting the pace of lessons
- Curriculum compacting
- Inquiry-based instruction
- Independent study
- Higher-order thinking skills
- Interest-based content
- Student-driven instruction
- Real-world problems and scenarios

Examples of Strategies and Practices that Support English Language Learners:

- Pre-teaching of vocabulary and concepts
- Visual learning, including graphic organizers
- Use of cognates to increase comprehension
- Teacher modeling
- Pairing students with beginning English language skills with students who have more advanced

English language skills

- Scaffolding
-Word walls
-Sentence frames
-Think-pair-share
-Cooperative learning groups

Unit title: Analytic Trigonometry (Chapter 5)
Unit summary: Verify and use Trigonometric Identities, Solve Trigonometric Equations and Apply Sum-and-Difference, Multiple-Angle, Sum-to-Product and Product-to-Sum Formulas
Primary interdisciplinary connections: Business, Science
$21{ }^{\text {st }}$ Century Themes: Global Awareness, Business and Entrepreneurial

Learning Targets

Standards: NJSLS 9-12.F.TF.1, 9-12.F.TF.2, 9-12.F.TF.6, 9-12.G.SRT.11, 9-12.F.IF.7e, 912.F.TF.8, 9-12.F.TF.7, 9-12.F.TF.5, 9-12.F.TF. 9

Technology Standards: 8.1.12.A.3, 8.1.12.C. 1
Content Statements:

1	Trigonometric Identities and Equations
2	Trigonometric Equations
3	Sum and Difference Formulas
4	Double-Angle and Half-Angle Formulas
5	Product-to-Sum and Sum-to-Product Formulas

Big Idea: Use trig ratios and identities to solve various types of problems in many ways.

Unit Essential Questions:

- What are Fundamental Trigonometric Identities and how are they useful?
- What are Sum-and-Difference, MultipleAngle, Sum-to-Product and Product-toSum formulas?

Unit Enduring Understandings:

- The Fundamental Trigonometric Identities are the heart of trigonometry and can be used to rewrite/simplify/evaluate trigonometric equations/functions.
- The various formulas are relationships that can be applied to solve problems that would otherwise be very difficult or even impossible to solve.

Unit Learning Targets

Students will...

- Learn the Fundamental Trigonometric Identities
- Solve/Evaluate Trigonometric Equations/Functions Using the Fundamental Trig Identities
- Apply assorted formulas to simplify or solve problems
- Use the Law of Signs and Law of Cosines to solve triangles and real life problems
- Perform operations on vectors and use vectors to solve problems

Evidence of Learning

Summative Assessment: Quizzes, Tests	
Formative Assessments: - Homework - Classwork - Other activities at teacher's discretion	
Lesson Plans	
Activities/Interdisciplinary Connections	Timeframe
- Define and use the Unit Circle and Radian Measures 1. Define Fundamental Trigonometric Identities and demonstrate how the relationships connect to what we already know about basic right triangle trigonometry. 2. Use FTI to simplify complicated trig expressions 3. Use FTI to prove that an equation either is not an identity or verify that it is an identity 4. Independent practice	15 minutes 10 minutes 5 minutes 10 minutes
Teacher Resources	Teacher Note
- Smart Notebook File with FTI (viewed on SmartBoard) - Handouts- Fundamental Trigonometric Identities - Textbook	

Algebra 2/PreCalculus - Grades $10^{\text {th }}-12^{\text {th }}$ Unit 8

Unit title: Analytic Trigonometry- Conics (PreCalculus Chapter 8)
Unit summary: Define and use equations of conic sections to solve problems involving real life phenomena such as planetary orbits.
Primary interdisciplinary connections: Business, Science
$21{ }^{\text {st }}$ Century Themes: Global Awareness, Business and Entrepreneurial

Learning Targets

Standards: NJSLS 9-12.G-GPE.1, 9-12.G-GPE.2, 9-12.G-GPE. 3
Technology Standards: 8.1.12.A.3, 8.1.12.C. 1
Content Statements:

1	Conic Sections - Overview
2	The Parabola
3	The Ellipse (introduce Circles first, which can be considered special ellipses)
4	The Hyperbola

Big Idea: Use equations of conic sections to find missing information about the conic or related information.

Unit Essential Questions:

- What are Conic Sections and how do they relate to what I already know?
- What is a parabola in terms of conics and how is it different from what I already know to be a parabola?
- What is an ellipse, how are circles related to it, and what are their equations?
- What is a hyperbola and how can equations of hyperbolas help solve real life problems?
- What is the Polar Coordinate System and how can I use it?

Unit Enduring Understandings:

- Conic Sections are the intersections of a plane and a double-napped cone which can all be related to what we already know from Geometric and Algebra.
- In chapter 2 we learned about the algebraic definition of a parabola. This section looks at the parabolas from a geometric perspective. They are still the same thing, but viewed through different lenses.
- Circles are special cases of an ellipse. An ellipse is an oval-like shape (which we will define formally in class), and they can be used to represent and solve real life problems.
- A hyperbola is a special conic section which looks much like two parabolas that open in opposite directions and do not intersect. Hyperbolas are used with systems such as GPS systems that we likely use regularly in today's

world.	
Unit Learning Targets Students will... - Recognize assorted conic sections as the intersections of a plane and a double-napped cone - Write the standard form of the equation of a parabola, circle, ellipse, and hyperbola - Use properties of parabolas, ellipses, and hyperbolas to solve real life problems - Plot points on the polar coordinate system - Convert points and equations from rectangular to polar form and vice versa - Recognize special polar graphs	
Evidence of Learning	
Summative Assessment: Quizzes, Tests	
Formative Assessments: - Homework - Classwork - Other activities at teacher's discretion	
Lesson Plans	
Activities/Interdisciplinary Connections	Timeframe
- Ellipses and Circles 1. Define Ellipses and show the connection between an ellipse and a circle as well as the equations of each and their similarities and differences. 2. Take given information and write equations of ellipses and use equations of ellipses to find missing information. 3. Graph ellipses based on given information or equations. 4. Find eccentricity of ellipses. 5. Independent practice.	10 minutes 10 minutes 5 minutes 5 minutes 10 minutes
Teacher Resources	Teacher Note
- Smart Notebook File with interactive illustration of an ellipse (viewed on SmartBoard) - Textbook	

[^0]: - Teacher modeling
 - Pairing students with beginning English language skills with students who have more advanced English language skills
 - Scaffolding
 -Word walls
 -Sentence frames
 -Think-pair-share
 -Cooperative learning groups

