Kenilworth Public Schools Curriculum Guide

Content Area Mathematics – Calculus Grade Twelfth Revised May 25, 2017 BOE Approved 10/15/13

Calculus- Grade 12 Scope and Sequence

Unit 1- Pre-calculus and Limits	Unit 2- Derivatives	Unit 3- Applications of Derivatives:	Unit 4- Integrals
Weeks 1-10	Weeks 11-20	Weeks 21-30	Weeks 31-40
Unit Description: Students will be able to perform advanced manipulation and analysis to functions in order to derive limits	<i>Unit Description</i> : Students will find instantaneous rates of change at any point within a function or relation	<i>Unit Description</i> : Students will use derivatives to further analysis and understanding of real-world phenomena	<i>Unit Description:</i> Students will understand the concept of an integral and apply that concept in a variety of ways to a variety of situations
 Unit Targets: Graph and Identify All major function categories Have deep understanding of Polynomial and trigonometric function behavior Have deep understanding of and be able to manipulate composite functions Understand behavior of and be able to graph piece-wise functions 	 Unit Targets: Define a derivative using different methods Apply multiple derivative rules on functions and relations Be able to model related rate problems Be able to make linear approximations Define differentials* 	 Unit Targets: Identify all extrema and inflections Apply Mean Value Theorem and Rolle's Theorem Test and analyze concavity Have deep function analysis applied to curve sketching Perform modeling and optimizations of real-world phenomena 	 Unit Targets: Use Riemann Sums and trapezoids to estimate area under functions Apply anti-derivative rules Apply the 1st and 2nd Fundamental Theorems of Calculus to solve Integrals Model totals as a function of integrals Apply Integration rules and perform u-substitution Solve differential equations using separation of variables technique*. Solve growth and decay using integrals*

Unit title: Pre-Calculus and Limits

Unit summary: Students will be able to apply essential Algebra and Pre-calculus techniques to introductory Calculus problems. Students will understand that calculus is the mathematics of change. Students will be able to determine the values a function is approaching even when the exact value does not exist (a limit).

Primary interdisciplinary connections: History, Science, Engineering, Economics, Health, Physical Education

21st Century Themes: Collaboration, Communication, Computer Technology, Creativity, Critical Thinking, Learning Skills, Problem Solving, Technology Skills, Business and Entrepreneurial Literacy

Learning Targets

Standards: NJSLS 9-12.N-RN, 9-12.A-SSE.1-3, 9-12.A-APR.1, 9-12.A-APR.3-7, 9-12.A-CED.1-4, 9-12.A-REI.1-7, 9-12.A-REI.10-11, 9-12.F-IF.1-9, 9-12.F-BF.1, 9-12.F-BF.3-5, 9-12.F-LE.1-5, 9-12.F-TF.1-9

14	I'-LL.1-J, 7-12.1'-11'.1-7
Co	ntent Statements:
1	Determine Domain and Range for complex function
2	Graph complex function
3	Determine vertical and horizontal asymptotes
4	Manipulate compound functions
5	Solve limits graphically using technology and via understanding of function behavior
6	Solve limits numerically using technology and by formulating supported conjectures
7	Solve limits analytically using a variety of Algebraic techniques (i.e. Rationalization, Factoring, applying Conjugates, Using Trigonometry)
Bi	g Idea: Calculus is the mathematics of change and allows us to work with both the infinite and
the	infinitesimal.
ТT	

 Unit Essential Questions: What are the properties of linear, quadratic, exponential, parametric, and logarithmic equations? What is the difference between average and instantaneous speed? 	 Unit Enduring Understandings: All problems can be approached graphically, numerically, and analytically Mathematics is a continuum where every accepted technique justifies the next, more advanced technique
 What is the connection between one-sided limits and overall limits? How can tables be used to determine 	advanced teeninque

limits?

Unit Learning Targets

Students will...

- Graph and identify all major function categories
- Have deep understanding of Polynomial and trigonometric function behavior
- Have deep understanding of and be able to manipulate composite functions
- Understand behavior of and be able to graph piece-wise functions
- Calculate a variety of limits

Evidence of Learning

Summative Assessment:

- Quizzes (Primarily open-ended free response format)
- Tests (Primarily standardized test format)

Formative Assessments:

- Presentation of techniques on chalk board, SmartBoard, and via document camera
- Homework review
- Class discussion
- Self Evaluation (self scoring open-ended problems according to a College Board style rubric)

Lesson Plans	
Activities	Timeframe
• Graph as many categories of functions as possible Work collaboratively as a class Each student presents a unique type of function and elaborates on its characteristics	20-30 minutes during first week of class
Teacher Resources	Teacher Note
 Textbook SmartBoard Document Camera College Board website Khan Academy 	Students can present on SmartBoard, chalkboard, or document cameras with communicators

• Various online graphing utilities and calculus calculators
• Graphing software (MS Mathematics, Winplot, etc.)

Unit title: Derivatives

Unit summary: Students will be able to identify, define and calculate derivatives, or instantaneous rates of change, in a variety of problems.

Primary interdisciplinary connections: History, Science, Engineering, Economics, Health, Physical Education

21st Century Themes: Collaboration, Communication, Computer Technology, Creativity, Critical Thinking, Learning Skills, Problem Solving, Technology Skills, Business and Entrepreneurial Literacy

Learning Targets

Standards: NJSLS 9-12.N-RN, 9-12.A-SSE.1-3, 9-12.A-APR.1, 9-12.A-APR.3-7, 9-12.A-CED.1-4, 9-12.A-REI.1-7, 9-12.A-REI.10-11, 9-12.F-IF.1-9, 9-12.F-BF.1, 9-12.F-BF.3-5, 9-12.F-LE.1-5, 9-12.F-TF.1-9

Content Statements:

- 1 Define and test for continuity
- 2 Apply limit definition of a derivative
- 3 Define and manipulate derivative as an instantaneous slope
- 4 Memorize and apply derivative formulas
- 5 Define and test for differentiability
- 6 Use derivatives to define the relationship between position, velocity, and acceleration
- 7 Use derivatives to calculate related rates in real world problems
- 8 Implement implicit differentiation for non-functions

Big Idea: A derivative is a rate of change. The real world is full of constantly changing values and derivatives model the world far more realistically than can be done with algebra alone.

Unit Essential Questions:	Unit Enduring Understandings:
• What is the difference between continuity at a point and a continuous function?	• Most theorems in calculus only apply if we can first establish continuity and differentiability
• How does continuity play a role in the Intermediate Value Theorem?	• Understanding the relationship between a function and its derivative is the first step to
• What is the relationship between slope of a tangent line and its normal line?	truly understanding how to model situations that change
• What are the properties needed to graph a derivative f' from the original function f?	
• How are one-sided derivatives related to a function's overall derivative being	

defined?

- What are the cases where f' fails to exist? Why?
- What is the relationship between differentiability and continuity? Is the relationship reversible?
- What is the connection between finding a derivative by definition and finding a derivative using integer power rules?
- How do velocity, speed, and acceleration relate to each other in terms of derivatives?
- How can the properties of a function's and its derivative's graphs connect to velocity, speed, and acceleration?
- What determines if a chain rule is needed to find a function's derivative?
- What determines how many chains are needed when using the power chain rule?
- When is implicit differentiation needed?
- How can tangents' and normal lines'slopes be calculated from an implicitly defined function?

Unit Learning Targets *Students will...*

- Define a derivative using different methods
- Apply multiple derivative rules on functions and relations
- Model velocity and acceleration
- Be able to model related rate problems
- Be able to make linear approximations
- Define differentials
- •

Evidence of Learning

Summative Assessment:

- Quizzes (Primarily open-ended free response format)
- Tests (Primarily standardized test format)

Formative Assessments:

 Presentation of techniques on chalk board, SmartBoard, and via document camera
Homework review
Class discussion

• Self-Evaluation (self-scoring open-ended problems according to a College Board style rubric)

Lesson Plans	
Activities	Timeframe
 Working in groups, students will visually estimate slopes for a variety of different graphs Prior to knowing derivative formulas, students will use algebraic knowledge to calculate as accurate a slope as possible 	20-30 minutes Beginning of Unit 2
• Groups will present their findings, and most precise group will be recognized	
Teacher Resources	Teacher Note
 Textbook SmartBoard Document Camera College Board website Khan Academy Various online graphing utilities and calculus calculators Graphing software (MS Mathematics, Winplot, etc.) 	Graphs may be presented on SmartBoard, passed out in a handout, or created by student groups

Unit title: Applications of Derivatives

Unit summary: Students will use derivatives for further analysis and understanding of realworld phenomena.

Primary interdisciplinary connections: History, Science, Engineering, Economics, Health, Physical Education

21st Century Themes: Collaboration, Communication, Computer Technology, Creativity, Critical Thinking, Learning Skills, Problem Solving, Technology Skills, Business and Entrepreneurial Literacy

Learning Targets

Standards: NJSLS 9-12.N-RN, 9-12.A-SSE.1-3, 9-12.A-APR.1, 9-12.A-APR.3-7, 9-12.A-CED.2, 9-12.A-REI.1-7, 9-12.A-REI.10-11, 9-12.F-IF.1-9, 9-12.F-BF.1, 9-12.F-BF.3-5, 9-12.F-LE.1-5, 9-12.F-TF.1-9

Content Statements:

1 Find extrema

2 Develop deep understanding of Rolle's Theorem and Mean Value Theorem

- 3 Implement the First Derivative Test analyzing increasing and decreasing functions
- 4 Use concavity and the Second Derivative Test
- 5 Apply First and Second Derivatives to curve sketching
- 6 Develop and implement optimization procedures

Big Idea: Derivatives can determine when extreme values occur (most profit, least materials, best practice, etc.) and are used to model optimization scenarios.

Unit Essential Questions:	Unit Enduring Understandings:
• How are extreme values calculated by hand? On a calculator?	• When analyzing functions, finding the extremes is often the most important piece of analysis
• What is the connection between critical points and extrema?	• Derivatives are a valuable tool in optimizing many types of processes
• How are max/min and intervals of increasing/decreasing represented on a graph?	• Inflection points are descriptive in analysis of statistics and economics
• How is the mean value theorem related to continuity and differentiability?	
• What is the connection between critical points, max/min, and points of reflection?	
• How are max/min intervals of	

increasing/decreasing, and concavity	
represented on a graph?	
• How can properties of a function be	
deduced from its first and second	
derivatives?	
• How can that function then be represented on a graph?	
• How can derivatives be applied to maximizing profits and minimizing costs?	
• How can these values be found on a graph?	
Unit Learning Targets	
Students will	
• Identify all extrema and inflections	
• Apply Mean Value Theorem and Rolle's Theorem	
• Test and analyze concavity	
• Have deep function analysis applied to curve sketching	
• Perform modeling and optimizations of real-world phenor	nena
Evidence of Learnin	1g
Summative Assessment:	
Quizzes (Primarily open-ended free response format)
• Tests (Primarily standardized test format)	,
Formative Assessments:	
• Presentation of techniques on chalk board,	
SmartBoard, and via document camera	
Homework review	
Class discussion	
Class discussion	
 Class discussion Self-Evaluation (self-scoring open-ended 	
 Class discussion Self-Evaluation (self-scoring open-ended problems according to a College Board 	
 Class discussion Self-Evaluation (self-scoring open-ended problems according to a College Board style rubric) 	
 Class discussion Self-Evaluation (self-scoring open-ended problems according to a College Board 	
 Class discussion Self-Evaluation (self-scoring open-ended problems according to a College Board style rubric) 	Timeframe
 Class discussion Self-Evaluation (self-scoring open-ended problems according to a College Board style rubric) Lesson Plans <u>Activities</u> Using a flat piece of paper, students will fold up the 	20-30 minutes
 Class discussion Self-Evaluation (self-scoring open-ended problems according to a College Board style rubric) Lesson Plans Activities Using a flat piece of paper, students will fold up the sides to produce a container with the maximum volume. 	
 Class discussion Self-Evaluation (self-scoring open-ended problems according to a College Board style rubric) Lesson Plans Activities Using a flat piece of paper, students will fold up the 	20-30 minutes

volume. Use differential calculus to compare experimental results with ideal optimized results.	
Teacher Resources	Teacher Note
 Textbook SmartBoard Document Camera College Board website Khan Academy Various online graphing utilities and calculus calculators Graphing software (MS Mathematics, Winplot, etc.) 	Based on available time, construction may begin either in class or as a homework assignment

Unit title: Integration

Unit summary: Students will understand the concept of an integral and apply that concept in a variety of ways to a variety of situations

Primary interdisciplinary connections: History, Science, Engineering, Economics, Health, Physical Education

21st Century Themes: Collaboration, Communication, Computer Technology, Creativity, Critical Thinking, Learning Skills, Problem Solving, Technology Skills, Business and Entrepreneurial Literacy

Learning Targets

Standards: NJSLS 9-12.N-RN, 9-12.A-SSE.1-3, 9-12.A-APR.1, 9-12.A-APR.3-7, 9-12.A-CED.2, 9-12.A-REI.1-7, 9-12.A-REI.10-11, 9-12.F-IF.1-9, 9-12.F-BF.1, 9-12.F-BF.3-5, 9-12.F-LE.1-5, 9-12.F-TF.1-9

Content Statements:

- 1 Solve antiderivatives and indefinite integration
- 2 Calculate area under complex curves
- 3 Calculate Reimann Sums and definite integrals
- 4 Understand and apply the Fundamental Theorem of Calculus
- 5 Apply integration by substitution
- 6 Calculate numerical integration
- 7 Work with natural logarithms and natural exponents
- 8 Explore growth and decay
- 9 Find area between curves

Big Idea: While derivatives analyzed "rates of change," integrals can find cumulative totals.

Unit Essential Questions:

- How accurately does the rectangular approximation method calculate the area under a curve?
- How are the approximations for area under the curve and volume of a sphere similar?
- How are Riemann sums used in the rectangular approximation method and approximations for volume of a sphere?
- How is each term in the integral notation connected to Riemann sums?

Unit Enduring Understandings:

- Simpler models can be extended to more detailed and accurate models
- Problems can be solved using graphical, numerical, and analytical techniques

• How can a graphing calculator be used to calculate integrals/area under a curve?	
• How can these be calculated on a graphing calculator?	
• What does average value of an integral find?	
Unit Learning Targets Students will	

- Use Riemann Sums and trapezoids to estimate area under functions
- Apply anti-derivative rules
- Apply the 1st and 2nd Fundamental Theorems of Calculus to solve integrals
- Model totals as a function of integrals
- Apply integration rules and perform u-substitution
- Solve differential equations using separation of variables technique*
- Solve growth and decay using integrals*

Evidence of Learning

Summative Assessment:

- Quizzes (Primarily open-ended free response format)
- Tests (Primarily standardized test format)

Formative Assessments:

- Presentation of techniques on chalk board, SmartBoard, and via document camera
- Homework review
- Class discussion
- Self-Evaluation (self-scoring open-ended problems according to a College Board style rubric)

Lesson Plans	
Activities	Timeframe
• Students will cut out rectangles of various dimensions. Students will "fit" rectangles on a graph of a smooth curve and attempt to approximate the total area. Class will discuss other basic geometric shapes that might be used to better approximate the area under the curve.	20-30 minutes (first week of Unit 4) 20 minutes (second week of Unit 4)
• Students will use online Riemann Sum Calculators to approximate integrals using different amounts of	

rectangles.	
Teacher Resources	Teacher Note
 Textbook SmartBoard Document Camera College Board website Khan Academy Various online graphing utilities and calculus calculators Graphing software (MS Mathematics, Winplot, etc.) Cardboard, scissors, graphing paper 	Pre-AP Geometry Workbook has a similar activity that can be referenced